
USACO 2020 February Contest, Gold
Problem 3. Delegation
Contest has ended.

Log in to allow submissions in analysis mode
Thus, his plan is to partition the set of roads into several paths, and delegate responsibility for each path to a worthy farm hand. To avoid contention, he wants each path to be the same length. He wonders for which lengths there exists such a partition.
More precisely, for each $1 \leq K \leq N-1$, help Farmer John determine whether the roads can be partitioned into paths of length exactly $K$.
SCORING:
- In test cases 2-4 the tree forms a star; at most one vertex has degree greater than two.
- Test cases 5-8 satisfy $N\le 10^3$.
- Test cases 9-15 satisfy no additional constraints..
INPUT FORMAT (file deleg.in):
The first line contains a single integer $N$.The next $N-1$ lines each contain two space-separated integers $a$ and $b$ describing an edge between vertices $a$ and $b$. Each of $a$ and $b$ is in the range $1 \ldots N$.
OUTPUT FORMAT (file deleg.out):
Output a bit string of length $N-1.$ For each $1\le K\le N-1,$ the $K$th bit of this string from the left should equal one if it is possible to partition the edges of the tree into paths of length exactly $K$ and $0$ otherwise.SAMPLE INPUT:
13 1 2 2 3 2 4 4 5 2 6 6 7 6 8 8 9 9 10 8 11 11 12 12 13
SAMPLE OUTPUT:
111000000000
It is possible to partition this tree into paths of length $K$ for $K=1,2,3.$ For $K=3$, a possible set of paths is as follows:
Problem credits: Mark Gordon and Dhruv Rohatgi