Subtask 2: All k equal
The intervals with intersection at least k with [ℓi,ri] are all intervals besides those satisfying rj<ℓ+k or ℓj>r−k. Note that these inequalities can't hold simultaneously, as it would imply rj−ℓj<ℓ−r+2k<k, contradicting the requirement that all intervals have length at least k.
So our answer is simply N−1 minus the number of intervals satisfying each inequality, which can be computed with sorting (and optionally, binary search).
Full Solution:
To count the number of intervals with intersection at least ki with [ℓi,ri], count the number of intervals with length at least ki, and subtract out those with right endpoint <li+ki or left endpoint >ri−ki. Since an interval with left endpoint >ri−ki and right endpoint <li+ki must have length <li−ri+2ki≤ki, no interval is subtracted more than once.
Since we may compute the counts in any order, let's sort them in decreasing order of k. Maintain lists of the left endpoints and right endpoints of the intervals with length at least k. As k decreases, we need to efficiently add to the lists and answer queries of the form: how many elements in the list are ≤x for some given x? There are many ways to do this, such as using a binary indexed tree with coordinate compression, or an order statistic tree in C++.
Implementation with order statistic tree (Benjamin Chen):
#include <bits/stdc++.h> using namespace std; #define ar array #include <ext/pb_ds/assoc_container.hpp> using namespace __gnu_pbds; template<class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; const int mxN=2e5; int n, l[mxN], r[mxN], k[mxN], ans[mxN], len_order[mxN], k_order[mxN]; int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 0; i < n; ++i) { cin >> l[i] >> r[i] >> k[i]; len_order[i] = k_order[i] = i; } sort(len_order, len_order + n, [](int a, int b) { return make_pair(r[a]-l[a], a) > make_pair(r[b]-l[b], b); }); sort(k_order, k_order + n, [](int a, int b) { return make_pair(k[a], a) > make_pair(k[b], b); }); Tree<ar<int, 2>> left_endpoints, right_endpoints; for (int i = 0, j = 0; i < n; ++i) { for (; j < n && r[len_order[j]] - l[len_order[j]] >= k[k_order[i]]; ++j) { left_endpoints.insert({l[len_order[j]], j}); right_endpoints.insert({r[len_order[j]], j}); } ans[k_order[i]] = j - 1; ans[k_order[i]] -= j - left_endpoints.order_of_key({r[k_order[i]] - k[k_order[i]] + 1, -1}); ans[k_order[i]] -= right_endpoints.order_of_key({l[k_order[i]] + k[k_order[i]], -1}); } for (int i=0; i<n; ++i) cout << ans[i] << "\n"; return 0; }
Implementation with binary indexed tree and coordinate compression (Brandon Wang):
#include <algorithm> #include <iostream> #include <map> const int MAXN = 200005; const int MAXT = 4 * MAXN + 5; int N; int l[MAXN]; int r[MAXN]; int k[MAXN]; std::map<int, int> cc; std::vector<int> coords; std::pair<int, std::pair<int, int>> keys[MAXN]; std::pair<std::pair<int,int>, std::pair<int,int>> queries[MAXN]; int ans[MAXN]; int lbit[MAXT]; int rbit[MAXT]; void input () { std::cin >> N; for (int i = 0; i < N; i++) { std::cin >> l[i] >> r[i] >> k[i]; } } void compress () { for (int i = 0; i < N; i++) { coords.push_back(l[i]); coords.push_back(r[i]); coords.push_back(l[i] + k[i] - 1); coords.push_back(r[i] - k[i] + 1); } std::sort(coords.begin(), coords.end()); int idx = 1; for (int i = 0; i < int(coords.size()); i++) { cc[coords[i]] = idx; idx++; } } void proc () { for (int i = 0; i < N; i++) { keys[i] = {r[i] - l[i], {cc[l[i]], cc[r[i]]}}; queries[i] = {{k[i], i}, {cc[l[i]+k[i]-1], cc[r[i]-k[i]+1]}}; } std::sort(keys, keys+N); std::sort(queries, queries+N); } void lupd (int x, int d) { while (x < MAXT) { lbit[x] += d; x += (x & (-x)); } } void rupd (int x, int d) { while (x < MAXT) { rbit[x] += d; x += (x & (-x)); } } int lqr (int x) { if (x == 0) return 0; return lbit[x] + lqr(x - (x & (-x))); } int rqr (int x) { if (x == 0) return 0; return rbit[x] + rqr(x - (x & (-x))); } void solve () { int qdx = N-1; for (int i = (N-1); i >= 0; i--) { while ((qdx >= 0) && (queries[qdx].first.first > keys[i].first)) { int idx = queries[qdx].first.second; ans[idx] += (N-2-i); ans[idx] -= rqr(queries[qdx].second.first); ans[idx] -= (lqr(MAXT-1) - lqr(queries[qdx].second.second - 1)); // std::cout << queries[qdx].first.second << " " << queries[qdx].second.first << " " << queries[qdx].second.second << "\n"; qdx--; } lupd(keys[i].second.first, 1); // std::cout << keys[i].second.first << " " << keys[i].second.second << "\n"; rupd(keys[i].second.second, 1); } while (qdx >= 0) { int idx = queries[qdx].first.second; ans[idx] += (N-1); ans[idx] -= rqr(queries[qdx].second.first); ans[idx] -= (lqr(MAXT-1) - lqr(queries[qdx].second.second - 1)); // std::cout << queries[qdx].first.second << " " << queries[qdx].second.first << " " << queries[qdx].second.second << "\n"; qdx--; } } void print () { for (int i = 0; i < N; i++) { std::cout << ans[i] << "\n"; } } int main () { std::cin.tie(0); std::ios_base::sync_with_stdio(0); input(); compress(); proc(); solve(); print(); }