In this subtask no edges initially exist in the graph, so we will be adding all edges, which will then form a tree. In the dfs tree, the set of nodes in any subtree must form a contiguous range, so we can use range dp. Define dp(i,j) to be the minimum cost on the range [i,j], where i is the root of a subtree connected to some series of subtrees under it containing the nodes [i+1,j]. Then
My code:
#include <bits/stdc++.h> using namespace std; const int mxN=750, INF=1e9; int n, a[mxN][mxN], dp[mxN][mxN]; int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; ++i) for (int j = 0; j < i; ++j) cin >> a[j][i], a[i][j] = a[j][i]; for (int i = n - 1; i >= 0; --i) for (int j = i + 1; j < n; ++j) { dp[i][j] = INF; for (int k = i; k < j; ++k) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + a[i][k + 1]); } cout << dp[0][n - 1]; return 0; }
This is similar to the previous subtask, except now we have to consider removal of edges. The new range [k+1,j] should have no edges to any node in [i+1,k] (otherwise the cross-linking between subtrees will violate the dfs ordering). Define
#include <bits/stdc++.h> using namespace std; const int mxN=750, INF=1e9; int n, a[mxN][mxN], dp[mxN][mxN]; // note this is defined slightly differently int cut(int l, int m, int r) { int res = 0; for (int i = l; i < m; ++i) for (int j = m; j <= r; ++j) res += max(-a[i][j], 0); return res; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; ++i) for (int j = 0; j < i; ++j) cin >> a[j][i], a[i][j] = a[j][i]; for (int i = n - 1; i >= 0; --i) for (int j = i + 1; j < n; ++j) { dp[i][j] = INF; for (int k = i; k < j; ++k) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + max(0, a[i][k + 1]) + cut(i + 1, k + 1, j)); } cout << dp[0][n - 1]; return 0; }
#include <bits/stdc++.h> using namespace std; const int mxN=750, INF=1e9; int n, a[mxN][mxN], dp[mxN][mxN], p[mxN][mxN]; int cut(int l, int m, int r) { if (l >= m || m > r) return 0; return p[l][r] - p[l][m - 1] - p[m][r]; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i < n; ++i) for (int j = 0; j < i; ++j) cin >> a[j][i], a[i][j] = a[j][i]; for (int i = n - 1; i >= 0; --i) for (int j = i + 1; j < n; ++j) { p[i][j] = p[i + 1][j] + p[i][j - 1] - p[i + 1][j - 1] + max(-a[i][j], 0); dp[i][j] = INF; for (int k = i; k < j; ++k) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + max(0, a[i][k + 1]) + cut(i + 1, k + 1, j)); } cout << dp[0][n - 1]; return 0; }