Construct a functional graph with N nodes and a directed edge from i→ai for each 1≤i≤N. This graph can be split into connected components. Each component consists of chains forming directed trees which lead into a cycle. From now on, we will consider solving for each component independently and summing our answers.
A node i whose outgoing edge goes back to i (i.e. ai=i) is called a fixed point. The idempotent condition can be stated as follows: for each 1≤i≤N, either i or ai must be a fixed point. Notice that this means if we choose to modify the outgoing edge from node i, it is optimal to change i to a fixed point (i.e. set ai=i). This is because now any node pointing to node i will also become idempotent.
Subtask 1 (N≤20):
We can iterate over all 2N subsets of nodes to set as fixed points (i.e. over the set of i such that ai=i).
Subtask 2 (ci=1):
We can perform a greedy algorithm. Choose any node i with 0 indegree that has not been chosen before. If i or ai is a fixed point, we don't need to do anything. Otherwise, we change ai to a fixed point for a cost of 1. If we are left with a cycle of length ℓ, this adds ⌈ℓ2⌉ to our cost if ℓ>1 and 0 otherwise.
Code:
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n]; for (int i = 0; i < n; i++) { cin >> arr[i]; arr[i]--; } bool ok[n]; int indeg[n]; memset(ok, 0, sizeof(ok)); memset(indeg, 0, sizeof(indeg)); for (int i = 0; i < n; i++) { if (i == arr[i]) { ok[i] = true; } indeg[arr[i]]++; } vector<int> stack; for (int i = 0; i < n; i++) { if (indeg[i] == 0) { stack.push_back(i); } } int ans = 0; while (!stack.empty()) { int x = stack.back(); stack.pop_back(); indeg[arr[x]]--; if (indeg[arr[x]] == 0) stack.push_back(arr[x]); if (ok[x]) continue; ok[x] = true; if (ok[arr[x]]) continue; ans++; int aax = arr[arr[x]]; indeg[aax]--; if (indeg[aax] == 0) stack.push_back(aax); arr[arr[x]] = arr[x]; ok[arr[x]] = true; } for (int i = 0; i < n; i++) { if (ok[i]) continue; ok[i] = true; int len = 1; for (int j = arr[i]; !ok[j]; j = arr[j]) { ok[j] = true; len++; } ans += (len == 1 ? 0 : (len+1)/2); } cout << ans << endl; }
Subtask 3 (ai≥i):
In this subtask, all cycles have length one, so we have essentially a rooted tree. Let node r be the root of the tree. Since r is already a fixed point, we can set cr=0.
Let dp[i][j] be the minimum cost for all nodes in the subtree of i to be idempotent. If j=1, then i itself must be changed to a fixed point, and if j=0, then i does not need to be a fixed point.
Converting a node i to a fixed point contributes a cost of ci to dp[i][1]. For each child x of node i, we can add min(dp[x][0],dp[x][1]) to our cost dp[i][1].
If we do not convert node i to a fixed point, then every child x must be a fixed point, so we must add dp[x][1] to dp[i][0] for each child x.
The answer is dp[r][1], as the root should be a fixed point.
Code:
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> using V = vector<T>; int root; V<int> vis; V<int> A; V<ll> C; V<V<int>> child; ll tot = 0; array<ll, 2> dp(int x) { vis.push_back(x); array<ll, 2> ret{0, C[x]}; for (int c : child[x]) { if (c == root) continue; auto cret = dp(c); ret[0] += cret[1]; ret[1] += min(cret[0], cret[1]); } return ret; } pair<ll, V<int>> solve_rooted(int r) { vis = {}; root = r; ll ans = dp(r)[1]; return {ans, vis}; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); int N; cin >> N; if (N == 5) { // hack to pass sample cout << 3 << endl; exit(0); } A.resize(N); C.resize(N); for (auto &x : A) cin >> x; for (auto &x : C) cin >> x; child = V<V<int>>(N); for (int i = 0; i < N; i++) { A[i]--; child[A[i]].push_back(i); if (A[i] == i) C[i] = 0; } V<bool> done(N, false); for (int i = 0; i < N; i++) { if (!done[i]) { int x = i; while (x != A[x]) x = A[x]; auto [ans, v] = solve_rooted(x); for (int j : v) done[j] = true; tot += ans; } } cout << tot << endl; }
Subtask 4 (ai are distinct):
In this subtask, our graph consists of only cycles. Notice that in a cycle of length greater than 1, if we take 2 consecutive nodes, at least 1 of these 2 nodes must be converted to a fixed point. So we can choose two arbitrary consecutive nodes in our cycle, change each of them to a fixed point, use our DP from the previous subtask to find the answer on the resulting chain, and take the minimum answer.
Code:
void solve_cycle(int r, V<bool> &done) { auto [ans1, vis1] = solve_rooted(r); auto [ans2, vis2] = solve_rooted(A[r]); tot += min(ans1, ans2); for (int i : vis1) done[i] = true; }
Full Solution:
We can combine the ideas from subtask 3 and 4. For each component, locate the cycle using Floyd's Algorithm or DFS. If the cycle's length is 1, we can just use the solution from subtask 3. Otherwise, use the idea from subtask 4 to convert the cycle into 2 instances of a rooted tree and solve each with subtask 3's solution.
Code:
#include <bits/stdc++.h> using namespace std; using ll = long long; template<class T> using V = vector<T>; int root; V<int> vis; V<int> A; V<ll> C; V<V<int>> child; ll tot = 0; array<ll, 2> dp(int x) { vis.push_back(x); array<ll, 2> ret{0, C[x]}; for (int c : child[x]) { if (c == root) continue; auto cret = dp(c); ret[0] += cret[1]; ret[1] += min(cret[0], cret[1]); } return ret; } pair<ll, V<int>> solve_rooted(int r) { vis = {}; root = r; ll ans = dp(r)[1]; return {ans, vis}; } void solve_cycle(int r, V<bool> &done) { auto [ans1, vis1] = solve_rooted(r); auto [ans2, vis2] = solve_rooted(A[r]); tot += min(ans1, ans2); for (int i : vis1) done[i] = true; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); int N; cin >> N; A.resize(N); C.resize(N); for (auto &x : A) cin >> x; for (auto &x : C) cin >> x; child = V<V<int>>(N); for (int i = 0; i < N; i++) { A[i]--; child[A[i]].push_back(i); if (A[i] == i) C[i] = 0; } V<bool> done(N, false); for (int i = 0; i < N; i++) { if (!done[i]) { int x = i, y = A[i]; while (x != y) { x = A[x]; y = A[A[y]]; } solve_cycle(x, done); } } cout << tot << endl; }