Let us formalize the problem. We are given N slingshots, where slingshot i has parameters (xi,yi,ti); we are also M queries. Query j has parameters (ai,bi), and we are asked to determine
Fix some query j. There are four cases for the location of the best slingshot i. It may satisfy:
Each case corresponds to a "quadrant" relative to the query. If we can find, for each quadrant, the minimum cost of query j if we use a slingshot in that quadrant, then the answer for query j is simply the minimum of the four quadrant-specific minima.
Consider some slingshot i which falls into the first case, for query j. Then the cost of using slingshot i for query j is
To compute this quantity for all queries, sweep left-to-right. Then when a query is encountered, we wish to find the minimum ti−xi−yi over all slingshots which have been encountered already and satisfy bj>yi. Such queries can be answered efficiently by maintaining a segment tree; whenever a slingshot is encountered by the sweepline, the value ti−xi−yi is inserted with index yi. Then the desired minimum can be obtained by a range minimum query.
The other three cases are analogous. Note that the coordinates yi must be compressed so that they can be used as indices into the segment tree.
Overall time complexity is O((N+M)log(N+M)).
#include <iostream> #include <vector> #include <algorithm> using namespace std; #define MAXN 100000 #define SEG (1<<18) #define INF 1000000000000000LL int N,Q; long long x[MAXN], y[MAXN], t[MAXN]; int cx[MAXN],cy[MAXN]; int cid[MAXN]; long long qx[MAXN],qy[MAXN],qt[MAXN]; int qcx[MAXN],qcy[MAXN]; int qid[MAXN]; class SegTree { public: long long seg[2*SEG]; int l[2*SEG],r[2*SEG]; int low,high; void init() { for(int i=SEG;i<2*SEG;i++) { seg[i] = -INF; l[i] = r[i] = i-SEG; } for(int i=SEG-1;i>0;i--) { seg[i] = -INF; l[i] = l[2*i], r[i] = r[2*i+1]; } } void update(int i,long long v) { i += SEG; for(;i>0;i/=2) seg[i] = max(seg[i],v); } long long getMax(int i) { if((l[i]>high)||(r[i]<low)) return -INF; if((l[i]>=low)&&(r[i]<=high)) return seg[i]; return max(getMax(2*i),getMax(2*i+1)); } }; bool cmp(int a,int b) { return x[a]<x[b]; } bool qcmp(int a,int b) { return qx[a]<qx[b]; } long long ansLeft[MAXN]; long long ansRight[MAXN]; int main() { cin >> N >> Q; vector<long long> vx,vy; for(int i=0;i<N;i++) { cin >> x[i] >> y[i] >> t[i]; vx.push_back(x[i]); vy.push_back(y[i]); cid[i] = i; } sort(cid,cid+N,cmp); for(int i=0;i<Q;i++) { cin >> qx[i] >> qy[i]; vx.push_back(qx[i]); vy.push_back(qy[i]); qid[i] = i; } sort(qid,qid+Q,qcmp); sort(vx.begin(),vx.end()); sort(vy.begin(),vy.end()); vx.resize(distance(vx.begin(),unique(vx.begin(),vx.end()))); vy.resize(distance(vy.begin(),unique(vy.begin(),vy.end()))); for(int i=0;i<N;i++) { cx[i] = lower_bound(vx.begin(),vx.end(),x[i]) - vx.begin(); cy[i] = lower_bound(vy.begin(),vy.end(),y[i]) - vy.begin(); } for(int i=0;i<Q;i++) { qcx[i] = lower_bound(vx.begin(),vx.end(),qx[i]) - vx.begin(); qcy[i] = lower_bound(vy.begin(),vy.end(),qy[i]) - vy.begin(); } SegTree up, down; up.init(); down.init(); int j = 0; for(int i=0;i<Q;i++) { int cur = qid[i]; while(j < N && x[cid[j]] <= qx[cur]) { down.update(cy[cid[j]], x[cid[j]]+y[cid[j]]-t[cid[j]]); up.update(cy[cid[j]], x[cid[j]]-y[cid[j]]-t[cid[j]]); j++; } down.low = 0, down.high = qcy[cur]; up.low = qcy[cur], up.high = vy.size()-1; ansLeft[cur] = min(qx[cur] + qy[cur] - down.getMax(1), qx[cur] - qy[cur] - up.getMax(1)); } up.init(); down.init(); j = N-1; for(int i=Q-1;i>=0;i--) { int cur = qid[i]; while(j>=0 && x[cid[j]] >= qx[cur]) { down.update(cy[cid[j]], -x[cid[j]]+y[cid[j]]-t[cid[j]]); up.update(cy[cid[j]], -x[cid[j]]-y[cid[j]]-t[cid[j]]); j--; } down.low = 0, down.high = qcy[cur]; up.low = qcy[cur], up.high = vy.size()-1; ansRight[cur] = min(-qx[cur] + qy[cur] - down.getMax(1), -qx[cur] - qy[cur] - up.getMax(1)); } for(int i=0;i<Q;i++) cout << min(min(ansLeft[i],ansRight[i]),(long long)abs(qx[i]-qy[i])) << '\n'; }