Processing math: 100%
(Analysis by Franklyn Wang)

First, we note that there exists an O(NK) dynamic-programming solution. Let dp[v] represent the answer to the problem on the prefix s[0,1,,v1]. Let cij=1 if the range s[i,i+1,j1] is at least half Guernseys, and 0 otherwise. Then, observe that

dp[j]=minmax(0,jK)ij1(dp[i]+cij)

Observe that if we let p[i] equal the difference between the number of Holsteins and Guernseys in the range s[0,1,i1], then cij={1, if p[i]p[j]0, if p[i]>p[j] which allows us to compute cij in O(1) time by precomputing p[0],p[1],p[n].

Implemented naively, this solution is O(NK). However, observe that 0cij1 for all i,j. Thus, notice that

minmax(0,jK)ij1(dp[i])+1dp[j]minmax(0,jK)ij1(dp[i])

Define here m=minmax(0,jK)ij1(dp[i]) It therefore suffices to check whether there exists an i such that

dp[i]+cij=m
To do this, we maintain two auxillary data structures:

1. A multiset storing all the values of dp[i].

2. A map from each value of dp[i] to the multiset of corresponding possible pre[i]'s.

Then, to check whether there exists an i satisfying the requirement, it suffices to first compute m, and then find the lowest possible value of p[i] among all i with dp[i]=m, and check whether that is lower than p[j], which suffices to solve the problem. My code is below:

#include <bits/stdc++.h>
using namespace std;

int DP[300001];
int pref[300001];
int main() {
    int N, K; cin >> N >> K;
    string s; cin >> s;
    DP[0] = 0;
    pref[0] = 0;
    for (int i = 0; i < (int) s.size(); i++){
      if (s[i] == 'H'){
        pref[i + 1] = pref[i] + 1;
      }
      else{
        pref[i + 1] = pref[i] - 1;
      }
    }
    //contains all values of dp[i] that are active
    multiset<int> dpvals;
    dpvals.insert(0);
    //contains the values of pre[i] given dp[i]
    multiset<int> elements[300001]; 
    elements[0].insert(0);
    for (int i = 1; i <= N; i++){
      //query
      int mnval = *(dpvals.begin());
      if (*elements[mnval].begin() < pref[i]){
        DP[i] = mnval;
      }
      else{
        DP[i] = mnval + 1;
      }
      dpvals.insert(DP[i]);
      elements[DP[i]].insert(pref[i]);
      //update
      if (i >= K){
        dpvals.erase(dpvals.find(DP[i - K]));
        elements[DP[i - K]].erase(elements[DP[i - K]].find(pref[i - K]));
      }
    }
    cout << DP[N] << endl;
}