First, we note that there exists an O(NK) dynamic-programming solution. Let dp[v] represent the answer to the problem on the prefix s[0,1,…,v−1]. Let cij=1 if the range s[i,i+1,…j−1] is at least half Guernseys, and 0 otherwise. Then, observe that
Observe that if we let p[i] equal the difference between the number of Holsteins and Guernseys in the range s[0,1,…i−1], then cij={1, if p[i]≤p[j]0, if p[i]>p[j] which allows us to compute cij in O(1) time by precomputing p[0],p[1],…p[n].
Implemented naively, this solution is O(NK). However, observe that 0≤cij≤1 for all i,j. Thus, notice that
Define here m=minmax(0,j−K)≤i≤j−1(dp[i]) It therefore suffices to check whether there exists an i such that
1. A multiset storing all the values of dp[i].
2. A map from each value of dp[i] to the multiset of corresponding possible pre[i]'s.
Then, to check whether there exists an i satisfying the requirement, it suffices to first compute m, and then find the lowest possible value of p[i] among all i with dp[i]=m, and check whether that is lower than p[j], which suffices to solve the problem. My code is below:
#include <bits/stdc++.h> using namespace std; int DP[300001]; int pref[300001]; int main() { int N, K; cin >> N >> K; string s; cin >> s; DP[0] = 0; pref[0] = 0; for (int i = 0; i < (int) s.size(); i++){ if (s[i] == 'H'){ pref[i + 1] = pref[i] + 1; } else{ pref[i + 1] = pref[i] - 1; } } //contains all values of dp[i] that are active multiset<int> dpvals; dpvals.insert(0); //contains the values of pre[i] given dp[i] multiset<int> elements[300001]; elements[0].insert(0); for (int i = 1; i <= N; i++){ //query int mnval = *(dpvals.begin()); if (*elements[mnval].begin() < pref[i]){ DP[i] = mnval; } else{ DP[i] = mnval + 1; } dpvals.insert(DP[i]); elements[DP[i]].insert(pref[i]); //update if (i >= K){ dpvals.erase(dpvals.find(DP[i - K])); elements[DP[i - K]].erase(elements[DP[i - K]].find(pref[i - K])); } } cout << DP[N] << endl; }