The first thing we should do is remove duplicates of ai. After this, we'll assume all the ai are distinct, and let N′ denote the number of distinct ai. Note that if N′≤3, then any L satisfies the second condition. So, the answer is just 1+2+⋯+(minai)/4.
Subtask 1 (ai≤106):
For this subtask, we first consider the following naive algorithm: Let U=(minai)/4 be an upper bound on L. For each 1≤L≤U, we can check how many possible values of ai(modL) there are. It turns out that if we break once we see 4 distinct values, then we will pass this subtask.
Here is an implementation:
N = input() S = list(set([int(x) for x in input().split()])) U = min(S) // 4 if len(S) < 4: print(U*(U+1)//2) exit() def test(L): mods = set() for a in S: mods.add(a%L) if len(mods) >= 4: return False return True print(sum([L for L in range(1, U+1) if test(L)]))
Now, why do we pass? A naive analysis says that this time should take O(UN′) time, where U≤2.5⋅105 and N′≤104. So this should not actually be fast enough.
Let's consider the test function again, which takes O(N′) time in the worst case. However, note that in order for the function to not return after 4 iterations (and so only take O(1) time), among a1modL,a2modL,a3modL,a4modL, there are at most 3 distinct values.
This implies that L divides one of (a2−a1,a3−a1,a4−a1,a3−a2,a4−a2,a4−a3). Now, if we let n(A) denote the maximum number of divisors that a number at most A can have, then we see that for all but at most 6n(106) values of L, we break after 4 loop iterations. So, we can bound the runtime of this step by O(U+n(106)⋅N′), where we run the loop O(U) times, and only run past 4 iterations O(n(106)) times. Since n(106)≤2⋅103 (here, note that any positive integer x has at most 2√x divisors), this will run in time.
General Case (ai≤4⋅109):
Now, U can be up to 109, so the preceding algorithm is too slow. On the other hand, n(4⋅109) is actually 2000, so we just need to speed up the O(U) step. To do this, instead of checking every possible value of L and seeing if it breaks after trying the first four ai, we will instead explicitly only consider L that would not have broken. The only such values of L are those that divide one of (a2−a1,a3−a1,a4−a1,a3−a2,a4−a2,a4−a3). So, we can just compute these divisors. We can compute the divisors of A in O(√A) time, so the total runtime of this is O(√maxai+n(4⋅109)⋅N′), which runs in time.
Here is an implementation:
N = input() S = list(set([int(x) for x in input().split()])) U = min(S) // 4 if len(S) < 4: print(U*(U+1)//2) exit() divs = set() for i, s in enumerate(S[:4]): for _, r in enumerate(S[i:4]): diff = abs(s-r) for t in range(1, int(diff**(0.5) + 1)): if diff%t == 0: divs.add(t) divs.add(diff//t) def test(L): if L > U: return False mods = set() for a in S: mods.add(a%L) if len(mods) >= 4: return False return True print(sum([L for L in divs if test(L)]))
Danny Mittal's implementation:
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Cowlendar { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); Set<Long> months = new HashSet<>(); StringTokenizer tokenizer = new StringTokenizer(in.readLine()); long maxWeekLength = Integer.MAX_VALUE; for (; n > 0; n--) { long month = Long.parseLong(tokenizer.nextToken()); months.add(month); maxWeekLength = Math.min(maxWeekLength, month / 4L); } if (months.size() <= 3) { System.out.println((maxWeekLength * (maxWeekLength + 1L)) / 2L); } else { Set<Long> candidates = new HashSet<>(); Long[] distinctMonths = months.toArray(new Long[0]); for (int j = 0; j < 4; j++) { for (int k = 0; k < j; k++) { long diff = Math.abs(distinctMonths[k] - distinctMonths[j]); for (long x = 1; x <= 100000; x++) { if (diff % x == 0L) { candidates.add(x); candidates.add(diff / x); } } } } long answer = 0; for (long candidate : candidates) { if (candidate <= maxWeekLength) { Set<Long> seen = new HashSet<>(); for (long month : distinctMonths) { seen.add(month % candidate); } if (seen.size() <= 3) { answer += candidate; } } } System.out.println(answer); } } }