The goal of this problem is to count the number of disjoint, non-empty subsets of cows S,T⊂[n] so that there exists a horizontal or vertical line separating the cows in S from the cows in T. By a brute force search, it's clear that we can enumerate such S,T in time O(n⋅3n), which solves the first subtask. Of course, we would like to do better.
To get O(n3): Let's start by counting the number of ways to pick sets that admit a horizontal separation, where S is to the left of T (the mirror-image case is the same). We can sort the cows in lexicographical order (first by x-coordinate, then tie-break by y-coordinate). For each cow i, let's count the number of ways to pick the sets so that i is the (lexicographically) last cow in S. This is exactly 2a(2b−1), where a is the number of cows that come earlier in the lexicographical order, and b is the number of cows with strictly larger x-coordinate than i. After sorting, we can easily compute these quantities for each cow in total time O(n).
This gives us the number of ways to pick teams separated by a horizontal line, and we can of course do the same for teams separated by a vertical line. The issue (and the main difficulty of this problem) is in correcting for the double-counting: there are some pairs of teams S,T that are separated by both a horizontal and a vertical line.
As before, let's specialize the problem a little. We'll start by considering the number of pairs S,T so that S is above and to the left of T (i.e. all cows in S have smaller x-coordinate and larger y-coordinate than all cows in T). The other cases are similar, and there is crucially no over-counting between these cases, since S,T are required to be both non-empty. Fix a cow i at position (xi,yi); we would like to count the number of sets S,T so that i is the final cow in S (by the lexicographical ordering), and all cows in T have x-coordinate larger than maxj∈Sxj (which equals xi) and y-coordinate smaller than minj∈Syj (which may be equal to yi or may be smaller).
Let's define a function Fi where Fi(y) is the number of sets S,T so that i is the final cow in S, and minj∈Txj>xi, and y=minj∈Syj>maxj∈Tyj. Ultimately we would like to compute ∑i∑yFi(y).
What is Fi(y)? If y>yi, then of course Fi(y)=0. If y=yi, then Fi(y)=2ai(y)(2bi(y)−1), where ai(y) is the number of cows j that precede i in lexicographical order and also satisfy yj≥y, and bi(y) is the number of cows j with xj>xi and yj<y. And if y<yi, then Fi(y)=(2ai(y)−2ai(y+1))(2bi(y)−1).
For any fixed i and y, we can easily compute ai(y) and bi(y) in time O(n) time. This lets us compute ∑i∑yFi(y) in O(n3) time.
To get O(n2): We can improve the above algorithm to quadratic time by observing that for each y, we can compute ai(y) for all i in a single sweep through the cows in lexicographical order (and similarly for bi(y)).
To get O(nlogn): This is somewhat harder, since we no longer have enough time to explicitly compute Fi(y) for each (i,y). Instead, we'll compute ∑i∑yFi(y) by maintaining the function Fi in a data structure as we iterate i through the cows in lexicographical order, and we'll make sure that the data structure has a way of efficiently summing Fi over all y.
Let's define Gi(y)=2ai(y)+bi(y), Hi(y)=2ai(y) and Ii(y)=2ai(y+1)+bi(y), so that Fi(y)=Gi(y)−Hi(y)+Hi(y+1)−Ii(y); we'll separately maintain Gi, Hi, and Ii. The goal is to maintain each function in a (lazy update) segment tree that supports range sum queries and range ``multiply by c'' updates.
Indeed, this is possible. As we increase i, how do Gi, Hi, and Ii change? Going from i to i+1, ai(y) increases by one for each y≤yi. We can implement this with a range ``multiply by 2'' update. If xi=xi+1, then bi remains unchanged. Otherwise, for each j with xj=xi+1, bi(y) decreases by one for all y>yj. We can implement this with one range ``divide by 2'' update for each such j (note that during the sweep, each j causes such an update only once).
The total number of range updates is O(n), and for each i, we can easily compute ∑yFi(y) after performing a constant number of range sum queries for Gi, Hi, and Ii on appropriate ranges. With a standard lazy segment tree, the overall time complexity is O(nlogn).
#include <iostream> #include <vector> #include <algorithm> #include <cstdio> using namespace std; #define MAXN 200005 #define MOD 1000000007 #define HALF (1000000008/2) #define SEG (1<<18) int x[MAXN]; int y[MAXN]; int cid[MAXN]; int numx[MAXN]; int numy[MAXN]; long long pow_array[MAXN]; long long zpow_array[2*MAXN+1]; int cmp(int a,int b) { if(x[a]!=x[b]) return x[a]<x[b]; return y[a]>y[b]; } long long G[2*SEG], H[2*SEG], scaleG[2*SEG], scaleH[2*SEG]; //G = 2^{a(y) + b(y)}; H = 2^{a(y)} long long I[2*SEG], scaleI[2*SEG]; //I = 2^{a(y+1) + b(y)} int l[2*SEG], r[2*SEG]; void init() { for(int i=SEG;i<2*SEG;i++) { G[i] = H[i] = I[i] = 1; scaleG[i] = scaleH[i] = scaleI[i] = 0; l[i] = r[i] = i-SEG; } for(int i=SEG-1;i>0;i--) { G[i] = (G[2*i] + G[2*i+1])%MOD; H[i] = (H[2*i] + H[2*i+1])%MOD; I[i] = (I[2*i] + I[2*i+1])%MOD; scaleG[i] = scaleH[i] = scaleI[i] = 0; l[i] = l[2*i], r[i] = r[2*i+1]; } } void push(long long *seg, long long *scale, int i) { if(scale[i] != 0) { seg[i] = (seg[i] * zpow_array[MAXN+scale[i]])%MOD; if(i<SEG) { scale[2*i] += scale[i]; scale[2*i+1] += scale[i]; } scale[i] = 0; } } int low,high,mult; void updateLeftFast(long long *seg, long long *scale) { int i = 1; if(r[i] <= high) { scale[i] += mult; return; } while(i < SEG) { push(seg,scale,i); if(r[2*i] <= high) { scale[2*i] += mult; push(seg,scale,2*i); i = 2*i+1; } else { push(seg,scale,2*i+1); i = 2*i; } } push(seg,scale,i); while(i>1) { i /= 2; seg[i] = (seg[2*i] + seg[2*i+1])%MOD; } } void updateRightFast(long long *seg, long long *scale) { int i = 1; if(l[i] >= low) { scale[i] += mult; return; } while(i < SEG) { push(seg,scale,i); if(l[2*i+1] >= low) { scale[2*i+1] += mult; push(seg,scale,2*i+1); i = 2*i; } else { push(seg,scale,2*i); i = 2*i+1; } } push(seg,scale,i); while(i>1) { i /= 2; seg[i] = (seg[2*i] + seg[2*i+1])%MOD; } } long long getSumFast(long long *seg, long long *scale) { int i = 1; long long sm = 0; if(r[i] <= high) { push(seg,scale,1); return seg[i]; } while(i < SEG) { if(r[2*i] <= high) { push(seg,scale,2*i); push(seg,scale,2*i+1); sm = (sm + seg[2*i])%MOD; i = 2*i+1; } else { push(seg,scale,2*i); i = 2*i; } } return sm; } long long ans; int N; void fix_double_counting() { init(); for(int i=0;i<N;i++) { G[y[i]+1+SEG] = (G[y[i]+1+SEG] * 2)%MOD; I[y[i]+1+SEG] = (I[y[i]+1+SEG] * 2)%MOD; } for(int i=SEG+1;i<2*SEG;i++) { G[i] = (G[i] * G[i-1])%MOD; I[i] = (I[i] * I[i-1])%MOD; } for(int i=SEG-1;i>0;i--) { G[i] = (G[2*i] + G[2*i+1])%MOD; I[i] = (I[2*i] + I[2*i+1])%MOD; } for(int i=0;i<N;i++) { if(i == 0 || x[cid[i]] > x[cid[i-1]]) { for(int j=i;j<N;j++) { if(x[cid[j]]>x[cid[i]]) break; low = y[cid[j]]+1, high = N; mult = -1; updateRightFast(G, scaleG); updateRightFast(I, scaleI); } } low = 0, high = y[cid[i]]; long long sumF = getSumFast(G, scaleG); if(y[cid[i]] > 0) { low = 0, high = y[cid[i]] - 1; sumF = (sumF + MOD - getSumFast(I, scaleI))%MOD; } low = high = 0; sumF = (sumF + MOD - getSumFast(H, scaleH))%MOD; ans = (ans + MOD - sumF)%MOD; low = 0, high = y[cid[i]]; mult = 1; updateLeftFast(G, scaleG); updateLeftFast(H, scaleH); if(y[cid[i]]>0) { low = 0, high = y[cid[i]]-1; updateLeftFast(I, scaleI); } } } int main() { scanf("%d",&N); for(int i=0;i<N;i++) { scanf("%d %d",&x[i],&y[i]); x[i]--, y[i]--; numx[x[i]]++, numy[y[i]]++; cid[i] = i; } pow_array[0] = 1; for(int i=1;i<MAXN;i++) pow_array[i] = (2LL * pow_array[i-1])%MOD; zpow_array[MAXN] = 1; for(int i=MAXN+1;i<=2*MAXN;i++) zpow_array[i] = (zpow_array[i-1] * 2)%MOD; for(int i=MAXN-1;i>=0;i--) zpow_array[i] = (zpow_array[i+1] * HALF)%MOD; sort(cid,cid+N,cmp); for(int i=0;i<N;i++) // Count horizontally separable teams ans = (ans + pow_array[i] * (pow_array[N-i-numx[x[i]]] + MOD - 1))%MOD; for(int i=0;i<N;i++) // Count vertically separable teams ans = (ans + pow_array[i] * (pow_array[N-i-numy[y[i]]] + MOD - 1))%MOD; fix_double_counting(); // Fix double-counting where first team is left & above second team for(int i=0;i<N;i++) x[i] = N-1-x[i]; sort(cid,cid+N,cmp); fix_double_counting(); // Fix double-counting where first team is right & above second team ans = (ans * 2)%MOD; // Account for red/blue symmetry printf("%d\n",ans); }