Subtask 1: N≤6
Consider all 2N(N−1)/2 ways to either have a direct flight or not between each pair of cities. For each of these ways, check whether it will produce the input by iterating over all 2N subsets of cities and checking whether that subset forms a valid flight route. The overall runtime is O(2N(N−1)/2⋅2N)=O(2N(N+1)/2).
Subtask 2: N≤100
Suppose we want to determine whether there is a direct flight from l to r. First, determine whether there is a direct flight from l′ to r′ for all (l′,r′)≠(l,r) satisfying l≤l′<r′≤r. Then, compute the parity of the number of flight routes from l to r excluding the potential direct flight from l to r. There is a direct flight from l to r if the computed parity does not match the parity given in the input.
Computing the parity of the number of flight routes from l to r excluding the potential direct flight from l to r can be done in O(N2) time (see the function count_routes_excluding_direct(l,r) in the code below). For l≤i≤r, let routes_tol(i) denote the parity of the number of flight routes from l to i using only the previously computed direct flights, or 1 if l=i. Also, let direct[j][i] denote whether there is a direct flight from j to i. Then for l<i≤r we have the relation routes_tol(i)≡∑i−1j=lroutes_tol(j)⋅direct[j][i](mod2). Using this, we can compute routes_tol(i) in increasing order from i=l+1 to i=r.
Time Complexity: The function count_routes_excluding_direct(l,r) is called O(N2) times and each call takes O(N2) time, so the overall runtime is O(N2⋅N2)=O(N4).
#include <bits/stdc++.h> using namespace std; template <class T> using V = vector<T>; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int N; cin >> N; V<V<int>> routes(N, V<int>(N)); for (int i = 0; i < N - 1; ++i) { string s; cin >> s; for (int j = i + 1; j < N; ++j) routes[i][j] = s.at(j - i - 1) - '0'; } V<V<int>> direct(N, V<int>(N)); auto count_routes_excluding_direct = [&](int l, int r) { V<int> routes_to(N); routes_to[l] = 1; for (int i = l + 1; i <= r; ++i) for (int j = l; j < i; ++j) routes_to[i] ^= routes_to[j] * direct[j][i]; return routes_to[r]; }; int ans = 0; for (int i = N - 1; i >= 0; --i) for (int j = i + 1; j < N; ++j) { direct[i][j] = routes[i][j] ^ count_routes_excluding_direct(i, j); ans += direct[i][j]; } cout << ans << "\n"; }
Full Solution: N≤750
We reduce the time complexity of the function count_routes_excluding_direct(l,r) to O(N). Since routes_tol(i) for l<i<r is equal to the parity of the number of flight routes from l to i, we can remove the loop over i in the function and directly compute routes_tol(r). The overall runtime is O(N3).
#include <bits/stdc++.h> using namespace std; template <class T> using V = vector<T>; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int N; cin >> N; V<V<int>> routes(N, V<int>(N)); for (int i = 0; i < N - 1; ++i) { string s; cin >> s; for (int j = i + 1; j < N; ++j) routes[i][j] = s.at(j - i - 1) - '0'; } V<V<int>> direct(N, V<int>(N)); auto count_routes_excluding_direct = [&](int l, int r) { int ret = 0; for (int j = l; j < r; ++j) ret ^= routes[l][j] * direct[j][r]; return ret; }; int ans = 0; for (int i = N - 1; i >= 0; --i) for (int j = i + 1; j < N; ++j) { direct[i][j] = routes[i][j] ^ count_routes_excluding_direct(i, j); ans += direct[i][j]; } cout << ans << "\n"; }
Bonus: N≤5000
Try solving this using bitsets.