(Analysis by Nick Wu)
Let's define f(n,k) to be the smallest distance needed to end up at point n having skipped exactly k points.
Given that we are at a specific point, if we knew that we wanted to skip x points, then we would want to know f(n−x−1,k−x). However, we don't know what the optimal number is. We can try all possible numbers of points to skip - this gives us an O(nk2) algorithm.
Here is my Java solution, which computes all f(n,k) values in a bottom-up fashion.
import java.io.*; import java.util.*; public class marathonS { static int[] x, y; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new FileReader("marathon.in")); PrintWriter pw = new PrintWriter(new BufferedWriter(new FileWriter("marathon.out"))); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); x = new int[n]; y = new int[n]; for(int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); x[i] = Integer.parseInt(st.nextToken()); y[i] = Integer.parseInt(st.nextToken()); } int[][] dp = new int[k+1][n]; for(int i = 0; i < dp.length; i++) { Arrays.fill(dp[i], 1 << 30); } dp[0][0] = 0; for(int i = 0; i <= k; i++) { for(int j = 0; j < n; j++) { for(int l = j+1; l < n && i + l-j-1 <= k; l++) { int nextI = i + (l-j-1); int nextJ = l; dp[nextI][nextJ] = Math.min(dp[nextI][nextJ], dp[i][j] + distBetween(j, l)); } } } pw.println(dp[k][n-1]); pw.close(); } public static int distBetween(int i, int j) { return dist(x[i], y[i], x[j], y[j]); } public static int dist(int x1, int y1, int x2, int y2) { int x = x1-x2; int y = y1-y2; return Math.abs(x) + Math.abs(y); } }